Jeferson da Silva

Project Update 20.04.2020

Current activities/Accomplishments:

I am currently working as an engineer in the research and development department of Eletronique du Mazet (the company that acquired the rights to the ECHODIA brand). Here, I have been working on the optimization and development of new hearing tests for the company’s devices. In the research field, I am currently involved in a project between Eletronique du Mazet, the French Armed Biomedical Research Institute (IRBA), the Pasteur Institute and the French company Sensorion. The project aims to establish a new medicine for the treatment of noise-induced hearing loss, combining the development of new diagnostic approaches and clarification of about new therapeutic solutions.

Future plans:

My current project is planned for the next 5 years, so in this period I intend to absorb as much knowledge as possible and consolidate my curriculum in project management, institutional research and medical device development.

My EGRET+ Experience:

EGRET+ gave me the opportunity to experience research within a company and the happiness of being hired at the end of the project. These three years have given me a great personal and professional development, thanks to working alongside leading researchers in their fields, the possibility of learning a third language and the completion of my PhD at the Université Clermont-Auvergne. The skills developed during grant-writing are constantly applied in my current work, and business start-up planning helps me to have a more comprehensive view of how the company works. Secondements is a great opportunity to understand the differences between academic and institutional research, which is of great importance to me when I have to make the connection between these two fields. I am very grateful to have been part of this program for all the knowledge I have acquired, for the cultures I have known and mainly for the people I have met.


Intracranial pressure technology development for usage in glaucoma


Dr. Fabrice Giraudet

Dr. Grégory Gerenton (

Prof. Paul Avan (

Background & Interests

My name is Jeferson J. da Silva, and I am from Brazil. I carried out my studies at the Pontifical Catholic University of Minas Gerais (PUC-MG), where I received my Bachelor’s degree in Electronics and Telecommunication Engineering. I completed my Master’s degree in Electrical Engineering at the Federal University of Minas Gerais (UFMG), where I worked in the Nucleus of Studies and Research in Biomedical Engineering (NEPEB). During my master’s degree I took part in two research projects related to evaluation of the auditory system and neural responses (EEG) to sensorial stimuli: “Investigation of event-related potential in sensory and cognitive process integration” and the development of the “Portable system for objective assessment of physiological hearing threshold: early diagnosis of hearing impairment.” Here I got experience in a wide range of signal processing methods, software and firmware programming, biomedical signal recording and equipment calibration. I have also, three years of experience as a teacher of technical education in the electronics department and biomedical equipment.

In October 2016, I joined the ECHODIA company in Clermont-Ferrand, France, to develop my PhD project.

Aim of the project

One common goal of several Egret-+ projects is to evaluate the part of intracranial pressure (ICP) in the pathophysiology of glaucoma. Noninvasive monitoring of ICP changes is possible through the ear using sound-evoked responses from the inner ear, and methods have been developed that reliably hint at absolute ICP, e.g. from the outcome of the body-tilt experiments wherein subjects serve as their own controls. However, in the context of glaucoma, this project will require ICP measurements repeated over the course of several days or months (e.g. to follow up the effect of a treatment of glaucoma). To provide reliable, tolerably fast measurements (ideally, that patients could perform at home), the current measuring systems must be upgraded and their improvements, validated clinically in samples of patients. The goal of this project is to design and compare signal processing methods more advanced than simple spectral analysis and threshold-based epoch rejection to improve the robustness of signal extraction from background acoustic noise (with atypical, non-Gaussian statistical properties) and speed up data collection even in patients with decreased cochlear responses due to ageing. With the aim of developing self-administered daily tests by unskilled patients, calibration methods will have to be established that control not only the levels of sound stimuli, but also their phases, highly sensitive to probe positioning and (even slight) variations in the ear’s impedance.

Personal links